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An efficient synthesis of N-benzyl-3-sulfonyl glutarimides.
Formal synthesis of the aromatase inhibitor AG-1
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Abstract

A formal [3+3] cycloaddition strategy to substituted glutarimides was studied. N-Benzyl a-sulfonyl-
acetamides and various a,b-unsaturated esters were used as starting materials. © 2000 Elsevier Science
Ltd. All rights reserved.

Glutarimides possess various biological activities.1 Therefore, the preparation of these cyclic
imides has attracted considerable attention from organic chemists.2 We wish to report an efficient
route towards the synthesis of N-benzyl-3-sulfonyl-4-or-5-substituted glutarimides 1. The aro-
matase inhibitor AG-1 was also synthesized.3

Sequential treatment of chloroacetyl chloride with benzylamine and sodium p-toluenesulfinate
furnished a-toluenesulfonyl acetamide 3 in 90% yield. After reaction of 3 with two equivalents
of sodium hydride, the resulting dianion 4 reacted with a variety of a,b-unsaturated esters to afford
the corresponding substituted N-benzyl-3-toluenesulfonyl glutarimides 1. Presumably, after
1,4-addition, ring closure of 5 could then follow, providing the cyclized product 1 (Scheme 1).

Scheme 1.
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As summarized in Table 1, using this protocol, various 4- or 5-alkyl- or aryl-N-benzyl-3-tolue-
nesulfonyl glutarimides were produced in moderate to excellent yields. More significantly, the
presence of the sulfonyl group differentiates between C3 and C5 in 1 therefore allowing
subsequent regioselective nucleophilic substitution. The carbonyl groups can be further elabo-
rated making possible the introduction of different substituents at C2 and C6. We have
successfully transformed 19 into 244 (Scheme 2), which has been converted to AG-1,3d an
efficient aromatase inhibitor and effective drug against breast cancer for postmenopausal
patients.5

Table 1
[3+3] Reaction of dianion 4 with various Michael acceptorsa,b,c

a All the yields were based on acetamide 3.
b The structures of 9 and 13 were confirmed by X-ray analysis.
c For selected NMR spectral data for 7, 15, 19, 22, 23, 24 see Ref. 6.

In conclusion, we have explored a formal [3+3] cycloaddition strategy that is synthetically
useful for constructing 4- or 5-substituted-3-toluenesulfonylglutarimides. We are currently
studying the scope of this process as well as additional applications of the methodology to the
synthesis of piperidines, indolizidines, quinolizidines and indoles.
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Scheme 2.
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J=13.8 Hz, 1H), 4.86 (d, J=13.8 Hz, 1H), 4.05–4.07 (m, 1H), 3.20–3.38 (m, 1H), 2.68–2.82 (m, 2H), 2.43 (s, 3H),
2.20–2.40 (m, 1H).
Selected spectral data of 15: 1H NMR (300 MHz, CDCl3): d 7.56 (d, J=7.8 Hz, 2H), 7.37 (d, J=4.5 Hz, 2H),
7.26–7.32 (m, 5H), 7.19 (s, 1H), 6.20 (s, 1H), 6.01 (d, J=2.7 Hz, 1H), 5.07 (d, J=14.4 Hz, 1H), 4.90 (d, J=14.4
Hz, 1H), 4.34–4.38 (m, 2H), 3.69 (dd, J=6.3, 18.0 Hz, 1H), 3.09 (d, J=18.0 Hz, 1H), 2.45 (s, 3H).
Selected spectral data of 19: 1H NMR (300 MHz, CDCl3): d 7.86 (d, J=8.1 Hz, 4/9H), 7.55 (d, J=8.4 Hz, 14/9H),
7.11–7.39 (m, 12H), 5.07 (d, J=13.8 Hz, 1H), 4.95 (d, J=13.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 2/9H), 4.51 (dd,
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J=5.7, 12.3 Hz, 7/9H), 4.35 (dd, J=5.7, 12.3 Hz, 2/9H), 4.14 (dd, J=3.3, 5.7 Hz, 7/9H), 3.68 (dd, J=3.3, 5.7 Hz,
2/9H), 3.02 (ddd, J=3.3, 5.7, 15.0 Hz, 7/9H), 2.75–2.82 (m, 2/9H), 2.52–2.61 (m, 7/9H), 2.43 (s, 3H).
Selected spectral data of 22: 1H NMR (500 MHz, CDCl3): d 7.79 (d, J=8.5 Hz, 2H), 7.32 (d, J=8.5 Hz, 2H),
7.21–7.26 (m, 8H), 6.93 (dd, J=2.0, 5.0 Hz, 2H), 4.97 (d, J=13.5 Hz, 1H), 4.88 (d, J=13.5 Hz, 1H), 4.04 (dd,
J=5.0, 14.0 Hz, 1H), 3.05 (dd, J=5.0, 14.0 Hz, 1H), 2.59 (t, J=14.0 Hz, 1H), 2.44 (s, 3H), 2.06 (qd, J=6.5, 13.0
Hz, 1H), 1.91 (qd, J=6.5, 13.0 Hz, 1H), 0.86 (t, J=6.5 Hz, 3H).
Selected spectral data of 23: 1H NMR (500 MHz, CDCl3): d 7.35 (d, J=7.5 Hz, 2H), 7.23–7.34 (m, 6H), 7.04 (d,
J=6.0 Hz, 2H), 5.10 (d, J=13.5 Hz, 1H), 4.96 (d, J=13.5 Hz, 1H), 2.68 (d, J=18.0 Hz, 1H), 2.43–2.51 (m, 1H),
2.30–2.33 (m, 1H), 2.17–2.23 (m, 1H), 2.05 (qd, J=6.0, 12.0 Hz, 1H), 1.88 (qd, J=6.0, 12.0 Hz, 1H), 0.84 (t,
J=6.0 Hz, 3H).
Selected spectral data of 24: 1H NMR (500 MHz, CDCl3): d 7.85 (br s, 1H), 7.36–7.39 (m, 2H), 7.26–7.31 (m, 3H),
2.59 (dd, J=4.0, 13.5 Hz, 1H), 2.37–2.44 (m, 2H), 2.21–2.27 (m, 1H), 2.08 (qd, J=7.5, 15.0 Hz, 1H), 1.93 (qd,
J=7.5, 15.0 Hz, 1H), 0.88 (t, J=7.5 Hz, 3H).
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