

Tetrahedron Letters 41 (2000) 10273-10276

TETRAHEDRON LETTERS

An efficient synthesis of *N*-benzyl-3-sulfonyl glutarimides. Formal synthesis of the aromatase inhibitor AG-1

Meng-Yang Chang, Bo-Rui Chang, Huo-Mu Tai and Nein-Chen Chang*

Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC

Received 22 June 2000; revised 9 October 2000; accepted 19 October 2000

Abstract

A formal [3+3] cycloaddition strategy to substituted glutarimides was studied. *N*-Benzyl α -sulfonylacetamides and various α,β -unsaturated esters were used as starting materials. © 2000 Elsevier Science Ltd. All rights reserved.

Glutarimides possess various biological activities.¹ Therefore, the preparation of these cyclic imides has attracted considerable attention from organic chemists.² We wish to report an efficient route towards the synthesis of *N*-benzyl-3-sulfonyl-4-or-5-substituted glutarimides **1**. The aromatase inhibitor AG-1 was also synthesized.³

Sequential treatment of chloroacetyl chloride with benzylamine and sodium *p*-toluenesulfinate furnished α -toluenesulfonyl acetamide **3** in 90% yield. After reaction of **3** with two equivalents of sodium hydride, the resulting dianion **4** reacted with a variety of α , β -unsaturated esters to afford the corresponding substituted *N*-benzyl-3-toluenesulfonyl glutarimides **1**. Presumably, after 1,4-addition, ring closure of **5** could then follow, providing the cyclized product **1** (Scheme 1).

0040-4039/00/\$ - see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01845-1

^{*} Corresponding author.

As summarized in Table 1, using this protocol, various 4- or 5-alkyl- or aryl-*N*-benzyl-3-toluenesulfonyl glutarimides were produced in moderate to excellent yields. More significantly, the presence of the sulfonyl group differentiates between C_3 and C_5 in 1 therefore allowing subsequent regioselective nucleophilic substitution. The carbonyl groups can be further elaborated making possible the introduction of different substituents at C_2 and C_6 . We have successfully transformed **19** into **24**⁴ (Scheme 2), which has been converted to AG-1,^{3d} an efficient aromatase inhibitor and effective drug against breast cancer for postmenopausal patients.⁵

Table 1 [3+3] Reaction of dianion **4** with various Michael acceptors^{a,b,c}

^a All the yields were based on acetamide 3.

^b The structures of **9** and **13** were confirmed by X-ray analysis.

^c For selected NMR spectral data for 7, 15, 19, 22, 23, 24 see Ref. 6.

In conclusion, we have explored a formal [3+3] cycloaddition strategy that is synthetically useful for constructing 4- or 5-substituted-3-toluenesulfonylglutarimides. We are currently studying the scope of this process as well as additional applications of the methodology to the synthesis of piperidines, indolizidines, quinolizidines and indoles.

Scheme 2.

Acknowledgements

The authors would like to thank the National Science Council of the Republic of China for financial support.

References

- (a) Moreia, A. L.; Corral, L. G.; Ye, W.; Johnson, B. A.; Stirling, D.; Muller, G. W.; Freedman, V. H.; Kaplan, G. AIDS Res. Hum. Retoviruses 1997, 13, 857. (b) Dawson, N.; Figg, W. D.; Brawley, O. W.; Bergan, R.; Cooper, M. R.; Senderowicz, A.; Headlee, D.; Steinberg, S. M.; Sutherland, M.; Patronas, N.; Sausville, E.; Linehan, W. M.; Reed, E.; Sartor, O. Chin. Cancer Res. 1998, 4, 37. (c) Waelbroeck, M.; Lazareno, S.; Plaff, O.; Friebe, T.; Tastoi, M.; Mutschler, E.; Lambert, G. Br. J. Pharmacol 1996, 119, 1319. (d) Park, M.; Lee, J.; Choi, J. Bioorg. Med. Chem. Lett. 1996, 6, 1297.
- (a) Nazar, F.; Pham-Huy, C.; Galons, H. Tetrahedron Lett. 1999, 40, 3697. (b) Leung, C. S.; Rowlands, M. G.; Jarman, M.; Foster, A. B.; Griggs, L. J.; Wilman, D. E. V. J. Med. Chem. 1987, 30, 1550. (c) Knabe, J.; Wahl, S. Arch. Pharm. 1987, 330, 1032. (d) Polonski, T. J. Chem. Soc., Perkin Trans. 1 1988, 639. (e) Kim, M. H.; Patel, D. V. Tetrahedron Lett. 1994, 35, 5603. (f) Robin, S.; Zhu, J.; Galons, H.; Pham-Huy, C.; Claude, J. R.; Tomas, A.; Viossat, B. Tetrahedron: Asymmetry 1995, 6, 1249. (g) Zhu, J.; Pham-Huy, C.; Lemoine, P.; Tomas, A.; Galons, H. Heterocycles 1996, 43, 1923.
- (a) Bushell, S. M.; Crump, J. P.; Lawrence, N. J.; Pineau, G. Tetrahedron 1998, 54, 2269. (b) Achmatowicz, O.; Malinowska, I.; Szechner, B.; Maurin, J. K. Tetrahedron 1997, 53, 7917. (c) Fadel, A.; Garciaargote, S. Tetrahedron: Asymmetry 1996, 7, 1159. (d) Fogliato, G.; Fronza, G.; Fuganti, C.; Grasselli, P.; Servi, S. J. Org. Chem. 1995, 60, 5693.
- 4. The ¹H and ¹³C NMR spectra of **24**, in agreement with the literature,^{3d} prove the regioselectivity of alkylation of **19**.
- 5. (a) Hartmann, R. W.; Batzl, C.; Pongratz, T. M.; Mannschreck, A. J. Med. Chem. 1992, 35, 2210 and references cited therein. (b) Harvey, H. A.; Lipton, A.; Santin, R. J. Cancer Res. (suppl.) 1982, 42, 3261.
- 6. Selected spectral data of 7: ¹H NMR (300 MHz, CDCl₃): δ 7.52 (d, J=8.1 Hz, 2H), 7.25–7.32 (m, 7H), 5.03 (d, J=13.8 Hz, 1H), 4.86 (d, J=13.8 Hz, 1H), 4.05–4.07 (m, 1H), 3.20–3.38 (m, 1H), 2.68–2.82 (m, 2H), 2.43 (s, 3H), 2.20–2.40 (m, 1H).
 Selected spectral data of 15: ¹H NMR (300 MHz, CDCl₃): δ 7.56 (d, J=7.8 Hz, 2H), 7.37 (d, J=4.5 Hz, 2H), 7.26–7.32 (m, 5H), 7.19 (s, 1H), 6.20 (s, 1H), 6.01 (d, J=2.7 Hz, 1H), 5.07 (d, J=14.4 Hz, 1H), 4.90 (d, J=14.4 Hz, 1H), 4.34–4.38 (m, 2H), 3.69 (dd, J=6.3, 18.0 Hz, 1H), 3.09 (d, J=18.0 Hz, 1H), 2.45 (s, 3H).
 Selected spectral data of 19: ¹H NMR (300 MHz, CDCl₃): δ 7.86 (d, J=8.1 Hz, 4/9H), 7.55 (d, J=8.4 Hz, 14/9H), 7.11–7.39 (m, 12H), 5.07 (d, J=13.8 Hz, 1H), 4.95 (d, J=13.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.95 (d, J=13.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.95 (d, J=13.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.95 (d, J=13.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.95 (d, J=13.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.91 (dz, J=13.8 Hz, 1H), 4.95 (dz, J=13.8 Hz, 1H), 4.90 (dz, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.95 (dz, J=13.8 Hz, 1H), 4.90 (dz, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.90 (dz, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.90 (dz, J=2.7 Hz, 2/9H), 4.51 (dd, J=13.8 Hz, 1H), 4.91 (dz, J=13.8 Hz,

J=5.7, 12.3 Hz, 7/9H), 4.35 (dd, J=5.7, 12.3 Hz, 2/9H), 4.14 (dd, J=3.3, 5.7 Hz, 7/9H), 3.68 (dd, J=3.3, 5.7 Hz, 2/9H), 3.02 (ddd, J=3.3, 5.7, 15.0 Hz, 7/9H), 2.75–2.82 (m, 2/9H), 2.52–2.61 (m, 7/9H), 2.43 (s, 3H).

Selected spectral data of **22**: ¹H NMR (500 MHz, CDCl₃): δ 7.79 (d, J=8.5 Hz, 2H), 7.32 (d, J=8.5 Hz, 2H), 7.21–7.26 (m, 8H), 6.93 (dd, J=2.0, 5.0 Hz, 2H), 4.97 (d, J=13.5 Hz, 1H), 4.88 (d, J=13.5 Hz, 1H), 4.04 (dd, J=5.0, 14.0 Hz, 1H), 3.05 (dd, J=5.0, 14.0 Hz, 1H), 2.59 (t, J=14.0 Hz, 1H), 2.44 (s, 3H), 2.06 (qd, J=6.5, 13.0 Hz, 1H), 1.91 (qd, J=6.5, 13.0 Hz, 1H), 0.86 (t, J=6.5 Hz, 3H).

Selected spectral data of **23**: ¹H NMR (500 MHz, CDCl₃): δ 7.35 (d, J=7.5 Hz, 2H), 7.23–7.34 (m, 6H), 7.04 (d, J=6.0 Hz, 2H), 5.10 (d, J=13.5 Hz, 1H), 4.96 (d, J=13.5 Hz, 1H), 2.68 (d, J=18.0 Hz, 1H), 2.43–2.51 (m, 1H), 2.30–2.33 (m, 1H), 2.17–2.23 (m, 1H), 2.05 (qd, J=6.0, 12.0 Hz, 1H), 1.88 (qd, J=6.0, 12.0 Hz, 1H), 0.84 (t, J=6.0 Hz, 3H).

Selected spectral data of **24**: ¹H NMR (500 MHz, CDCl₃): δ 7.85 (br s, 1H), 7.36–7.39 (m, 2H), 7.26–7.31 (m, 3H), 2.59 (dd, J=4.0, 13.5 Hz, 1H), 2.37–2.44 (m, 2H), 2.21–2.27 (m, 1H), 2.08 (qd, J=7.5, 15.0 Hz, 1H), 1.93 (qd, J=7.5, 15.0 Hz, 1H), 0.88 (t, J=7.5 Hz, 3H).